Галактический интернет: как обеспечить мгновенную связь в космосе

«Космос велик. Он просто огромен. Вы даже не поверите, насколько он умопомрачительно громаден. Вам может казаться, что от вашего дома до аптеки далеко, но это просто ерунда в сравнении с космосом». Дуглас Адамс. Путеводитель по Галактике для путешествующих автостопом.

Представим себе далекое-далекое будущее. Первая земная межзвездная экспедиция прибывает в систему Альфа Центавра А. Корабли ложатся на парковочную орбиту вокруг обнаруженной местной планеты, а командир экспедиции торжественно объявляет о достижении цели и поднимает бокал коллекционного шампанского урожая 2158 года. После этого экипаж, свободный от вахты, расходится по каютам, достает коммуникаторы, и начинается негласное соревнование — кто первым зарегистрируется в системе Альфа Центавра А в популярной социальной сети Spacebook. И вот тут-то социально активных астронавтов и космонавтов будущего поджидает один неприятный сюрприз. Оказывается, что интернета в этой звездной системе нет! И, как заявляет системный администратор экспедиции, не предвидится: «Передатчики, которыми оснащены корабли, недостаточно мощны для того, чтобы наладить постоянный канал с высокой пропускной способностью между Солнцем и Альфой Центавра А». Так что быстрого интернета, мол, не ждите — максимум десятки килобит в секунду, как в каменном, то есть, простите, в XX веке.


Но тут слово берет один из инженеров-связистов, старый библиофил. Он приносит из своей каюты драгоценный старинный фолиант, написанный в самом начале XXI века, — «Полеты и коммуникации в глубоком космосе: использование Солнца в качестве гравитационной линзы» (Deep Space Flight and Communications: Exploiting the Sun as a Gravitational Lens, 2009) — и говорит, что в этой книге есть решение возникшей проблемы.

Клаудио Макконе – известный итальянский астроном, руководитель направления космических научных исследований Международной академии астронавтики (International Academy of Astronautics, IAA) и председатель постоянного комитета IAA по SETI (Search for Extraterrestrial Intelligence, поиску внеземного разума). Он долгое время проработал в компании Alenia Spazio, где принимал участие в разработке самых различных космических аппаратов, таких как научный спутник Quasat, экспериментальный «спутник на привязи» Tethered Satellite System (TSS) или солнечный парус для полета к Марсу.

Четыре года пути

Автора книги Клаудио Макконе интересует вопрос космических коммуникаций на больших расстояниях. Действительно больших, межзвездных, поскольку даже от ближайшей к Солнцу звездной системы — Альфы Центавра — свет идет до нас более четырех лет.

На таких расстояниях можно использовать различные способы коммуникаций. Скажем, послать «письмо в бутылке», то есть космический зонд с информацией. Вероятность его прибытия к цели высока, и объем информации достаточно велик (практически не ограничен), но вот только посылать такие зонды очень невыгодно как с экономической, так и с энергетической точки зрения, поэтому для создания постоянного канала связи он подходит плохо. Другой способ — с помощью вполне традиционных средств связи, использующих электромагнитные волны. Основная проблема такой связи — расходимость: даже направленный пучок электромагнитных волн, будь то радио или свет, неизбежно расходится за счет дифракции. На стороне приемника улавливается лишь малая часть энергии сигнала, посланного передатчиком в пространство. Бороться с этим можно, увеличивая мощность сигнала, но этот путь невыгоден энергетически, да и повышение чувствительности приемника (в том числе и установкой больших антенн) имеет свою цену, тем более что с увеличением расстояния между передатчиком и приемником ситуация ухудшается.

Радио с помехами

В своей статье 2011 года «Межзвездная радиосвязь, улучшенная использованием Солнца в качестве гравитационной линзы» (Interstellar radio links enhanced by exploiting the Sun as a Gravitational Lens) в журнале Acta Astronautica Клаудио Макконе приводит расчеты традиционного радиоканала между Солнечной системой и Альфой Центавра А. Они неутешительны: при передаче сигнала мощностью 40 Вт с Земли с помощью гигантской 70-метровой антенны системы NASA DSN (Deep Space Network), имеющей усиление 84 дБ (то есть усиливающей мощность сигнала в основном направлении более чем в 100 млн раз), на частоте 32 ГГц (Ка-диапазон, именно такой использует зонд Cassini) и скорости передачи 32 кбит/с (такую имеет европейский космический зонд Rosetta) и приеме с помощью 12-метровой антенны (с усилением 69 дБ, то есть чуть меньше чем в 10 млн раз) космического зонда в системе Альфа Центавра А частота появления ошибочных битов (bit error rate) составляет 0,49. Это означает, что почти 50% пересылаемой информации теряется, что, с точки зрения Макконе, делает указанный коммуникационный канал практически бесполезным. Однако Макконе нашел выход из этого тупика. Причем принципиально отличающийся от «игры мускулами». Ученый предлагает фокусировать отсылаемый к другим звездам радиосигнал... с помощью Солнца.

По замыслу Клаудио Макконе, радиосигнал можно фокусировать гравитационной линзой – любым массивным телом, например звездой. Для этого передатчик нужно расположить на «оси радиоканала» на расстоянии, превышающем минимальную дистанцию фокусировки (это расстояние зависит от радиуса и массы звезды). Для нашего Солнца оно составляет 550 а.е. (в 13,75 раза превышает радиус орбиты Плутона). Большее расстояние предпочтительнее – при этом радиосигнал огибает Солнце на большем расстоянии, где слабее влияние радиопомех солнечной короны.


Солнечная линза

То, что любое массивное тело в рамках общей теории относительности (ОТО) будет искривлять траекторию световых лучей, предположил еще Альберт Эйнштейн в 1915 году. Вскоре этот эффект был подтвержден экспериментально, а в 1936 году Эйнштейн опубликовал в журнале Science расчеты, согласно которым звезда может выступать в качестве гравитационной линзы, дающей кольцеобразное изображение. Годом позднее американский астроном Фриц Цвикки пришел к заключению, что линзой может быть не только звезда, но и целая галактика. Этот вывод смогли подтвердить лишь в 1979 году, когда британские астрономы обнаружили объект, состоящий из двух находящихся на угловом расстоянии 6 угловых секунд абсолютно идентичных квазаров, и выяснили, что это на самом деле один квазар, «раздвоенный» с помощью эффекта гравитационного линзирования далекой галактикой, находящейся между квазаром и Землей.

COM_SPPAGEBUILDER_NO_ITEMS_FOUND