Система безопасности АЭС: стержни, спринклер, контейнмент

Прошло меньше 80 лет с момента запуска первого экспериментального ядерного реактора. Однако за это время технологии сильно изменились, и мало кто знает, как на самом деле обеспечивается безопасность современных атомных станций.

Чтобы развеять мифы о вреде атомной энергетики, подробно разберем все элементы системы безопасности АЭС на примере станции с водо-водяным энергетическим реактором (ВВЭР).


Содержание статьи

Активная зона реактора ВВЭР Нововоронежской АЭС-2

Оставшаяся часть – это энергия, которую уносит из ядра ионизирующее излучение: гамма-излучение и свободные элементарные частицы. Среди этих частиц присутствуют 2–3 свободных нейтрона, которые инициируют следующие реакции деления. Чтобы цепная реакция не приобрела лавинообразный неуправляемый характер, достаточно лишь регулировать число свободных нейтронов в активной зоне.

Это делается с помощью специальных поглощающих стержней, как правило, заполненных карбидом бора, и борной кислоты, которая присутствует в контуре охлаждения реактора. Попадая в ядро атома бора, нейтрон «застревает» в нем и больше не участвует в ядерных реакциях. Уровень погружения поглощающих стержней в активную зону, а также концентрации борной кислоты в охлаждающем контуре автоматически регулируются системой управления и защиты (СУЗ) под пристальным контролем команды операторов, которые в зависимости от требуемой мощности реактора могут регулировать цепную реакцию с помощью электрического сигнала с пульта. 

Если при чрезвычайной ситуации на станции пропадет электричество, то поглощающие стержни автоматически погрузятся в активную зону. Для этого их подвешивают над реактором и фиксируют электромагнитами. При обесточивании стержни под действием силы тяжести неизменно опустятся в зону, где делится урановое топливо. Воспроизводство нейтронов прекратится, цепная реакция замедлится и остановится.

Монтаж купола контейнмента на Ростовской АЭС


Кроме внешнего контроля над числом нейтронов конструкция активной зоны ВВЭР – наиболее распространенного типа энергетических реакторов – предусматривает так называемое саморегулирование. Если количество нейтронов возрастает, число реакций деления увеличивается. Закономерно растет общая температура топлива и конструкционных материалов активной зоны. Вслед за ней увеличивается температура теплоносителя – воды, что ведет к изменению ее плотности. Вода с пониженной плотностью лучше поглощает нейтроны, и количество реакций деления уменьшается. Данный эффект, который называется отрицательной обратной связью, возникает благодаря комплексным изменениям нейтронно-физических характеристик активной зоны, просчитанных и подобранных на этапе разработки реактора.

Естественный фон: как защитить персонал станции и окружающую среду 

Радиоактивные продукты деления и образующееся в его ходе ионизирующее излучение не покидают корпус реактора благодаря четырем барьерам безопасности. Барьеры напоминают фильтры на водоочистительной станции, которые поэтапно задерживают крупные, средние, а затем и вовсе неразличимые глазом примеси. «Фильтры» в реакторе по очереди останавливают продукты радиораспада – от самых медленных и тяжелых осколков деления до самых легких и быстрых частиц.

Монтаж купола контейнмента на Ростовской АЭС

Первым барьером служит сама топливная таблетка – спрессованный в характерную форму твердый диоксид урана. Таблетки перед сборкой в тепловыделяющий элемент (ТВЭЛ) спекаются при температуре 1650 °С, после чего они приобретают керамические свойства и задерживают некоторые нуклиды. Радионуклиды и частицы распада, которые проходят первый барьер, сталкиваются со вторым – оболочкой ТВЭЛ. Оболочку изготавливают из сплавов циркония ядерной чистоты, практически лишенного примесей, как правило, с небольшой добавкой ниобия. Чистота сплава обеспечивает повышенную коррозионную стойкость циркония. В нормальных режимах эксплуатации (без разгерметизации ТВЭЛ) все продукты деления остаются внутри ТВЭЛ. 

Третий и четвертый барьеры призваны окончательно запечатать нуклиды и частицы внутри реактора и не дать им ни единого шанса вырваться наружу. Корпус реактора толщиной 20 см и первый контур с теплоносителем, доставляющим тепло из активной зоны к парогенератору, – это третий защитный барьер. Четвертым является так называемый контейнмент – внешняя герметичная оболочка активной зоны, выполненная из железобетона. Толщина стенки контейнмента – 1 м: это надежная защита от возможного выхода радиоактивных веществ (или материалов) в окружающую среду даже в случае серьезной аварии.

COM_SPPAGEBUILDER_NO_ITEMS_FOUND